

ELECTRICAL ENGINEERING

				Effectiv	e fror	n		
				Session			2022-2023	3
Course Code	EE 513	Title of The Course	Advance Power Electronics		L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		4	0	0	4

Objective	 Knowledge and concept of voltage source inverter. Use of switching techniques/schemes and current source inverters. Knowledge and concept of multilevel inverters, its applications and control Identify and apply concept of resonant converters. Knowledge of synchronous rectifiers and matrix converters.
-----------	---

	Course Outcomes				
CO1	Know about the concepts of voltage source inverter				
CO2	CO2 Identify and apply switching techniques/schemes and current source inverters				
CO3	Know about concept of multilevel inverters, its applications and control.				
CO4	Identify and apply concept of resonant converters				
CO5	Know about synchronous rectifiers and matrix converters.				

invo Swa its o Mu invo Res	witch-Mode Inverters: Basic concepts of voltage source inverter (VSI), current source overters (CSI), single phase half bridge, full bridge and three phase bridge inverters. witching Strategies: PWM switching strategies, Selective Harmonic Elimination	8	CO1
met its o Mu invo Res	witching Strategies: PWM switching strategies. Selective Harmonic Elimination		
inv Res	nethod, other inverter switching schemes, Modulation index, Modulation frequency and s effect on switching	-	CO2
	fulti Level Inverters: Need for multilevel inverters, Types, three level, five level inverter operation and analysis. Applications of multilevel inverters and control.	18	CO3
	Aesonant Converters: Basic resonant circuit concepts, Load resonant converters, series and parallel, resonant switch converters – Zero voltage switching (ZVS), Zero current witching (ZCS), comparison of resonant converters.	-	CO4
	fiscellaneous Converters: Multilevel converters topologies: Cascaded, NPC, Flying apacitor MLI, Synchronous rectifiers, matrix converters,	g8	CO5

Name & Sign of Program Coordinator Sign & Seal of HoD

Ned Mohan, "Power Electronics Converters, Applications, and Design" John Wiley (SEA), 3rd Ed 2014.
 M. H. Rashid "Power Electronics" PHI Learning
 G. K. Dubey, "Power Semi-Conductor Controllers", Wiley Eastern, 2nd Edition, 2012.
 R W Erickson and D Maksimovic "Fundamental of Power Electronics" Springer, 2ndEdition.
 M.H. Rashid, "Hand book of Power Electronics", 4th Edition, 2013.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	3	3	1				1	2	2
CO2	3	2	2	2	3	3	3					1	2	2
CO3	3	2	2	1	1	3	3	1				1	2	1
CO4	3	2	2	2	3	3	3					3	2	1
CO5	3	3	3	3	3	3	2					2	3	1

3: Strong contribution, 2: average contribution, 1: Low contribution

Name & Sign of Program Coordinator	Sign & Seal of HoD	

ELECTRICAL ENGINEERING

				Effectiv Session		n	2022-2023	3
Course Code	EE 514		Power Apparatus & System Modelling		L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		4	0	0	4

 To develop knowledge on principles of modelling of synchronous generators To understand the fundamental concepts of application of Parks transformation To provide advanced knowledge and understanding about the models of transmission line, transformer and load To analyze governors for thermal and hydropower plant To evaluate the performance of different excitation systems 	
	 To understand the fundamental concepts of application of Parks transformation To provide advanced knowledge and understanding about the models of transmission line, transformer and load To analyze governors for thermal and hydropower plant

	Course Outcomes						
CO1	Understands the basic concept of modelling of synchronous generators						
CO2	Apply Parks transformation technique						
CO3	Understand different models of transmission line, transformer and load						
CO4	Analyze governors for thermal and hydro power plant						
CO5	Evaluate the performance of AC and DC excitation system						

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Synchronous Generator Modeling:	8	CO1
1	Schematic diagram, equivalent circuit, Starting method,		
	balanced operation, Park's transformation (dqo transformation)		
2	Dynamic Modeling of Synchronous Generator:	8	CO2
	Modeling of synchronous generator with damper windings; Synchronous Machine		
	Parameters: operational and standard, Effect of Saturation on Synchronous Machine Modelling.		
	Modelling of Excitation systems:	8	CO3
3	Excitation system requirements, Types of Excitation system, Control and protective		
	function of Excitation system, Modelling of various Excitation system, IEEE type various		
	DC, AC and Static models.		
	Prime Movers Modelling:	8	CO4

Name & Sign of Program Coordinator	Sign & Seal of HoD

4	Steam	turbin	e and (Fovern	ing sys	stem:									
	 Steam turbine and Governing system: Various configurations of Steam turbine of fossil- fueled and nuclear units, Modelling of Steam turbine and its governing systems. Hydraulic turbine and Governing system : Hydraulic turbine transfer function, linear 											g of			
												near			
	and Non- linear turbine model, Modelling of Governors for Hydraulic turbine														
5	Modelling of Other Power System Components:											8	CO5		
	Inductio	on Me	otor S	vnchro	nous I	Motor	Trans	former	s tran	smissior	lines	Static	and		
	Induction Motor, Synchronous Motor, Transformers, transmission lines, Static and Dynamic loads, Selected FACTS Controllers (SVC and TCSC).											unu			
-	Dynam	ic ioau	5, 50100			onuon		C and	icsc)	•					
Refer	ences I	Books:													
1. A.A	A. Foud	& P.M	. Ander	rson, "I	Power S	System	Stabili	ty and	Control	l", Galgo	tia Pres	s, New I	Delhi, 20	14.	
2. L.P	. Singh	, "P.S.	Analys	is & D	ynamic	s", Wi	ley Eas	tern, D	elhi, 20)14					
3. P. I	Kundur	, "Powe	er Syste	em Stał	oility ar	nd Cont	trol", N	Ic-Grav	w Hill,	2010					
4. K.F	R. Padiy	/ar, "Pc	ower Sy	vstem E)ynami	cs: Stal	bility a	nd Con	trol", E	S.S. Publ	ications,	2008			
PO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CÓ															
CO1	3	2		1								3	2	3	
CO2	3	2						1				3	2	2	
CO3	3	1									2	3	2	3	
CO4	3	2									1	3	2	2	
CO5	3	2						1				3	2	3	

3: Strong contribution, 2: average contribution, 1: Low contribution

Name & Sign of Program Coordinator	Sign & Seal of HoD	

ELECTRICAL ENGINEERING

				Effective f Session	from		2022-2023	3
Course Code	EE 515	Title of The Course	Advance Power System Analysis		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		4	0	0	4

 Knowledge of Contingency and security studies Knowledge of Modern energy control Techniques 	Objective	
--	-----------	--

	Course Outcomes					
C01	Solve the problem of graph theory, bus admittance and impedance matrices					
CO2	Able to attain the knowledge of algorithm of bus impedance matrix and short circuit studies using three-phase Impedance Z_{BUS}					
CO3	Able to solve the problems of power flow solutions					
CO4	CO4 Having knowledge of Contingency and security studies					
CO5	Having knowledge of Modern energy control Techniques					

No	Contant	Contac	t Mapped
INO.	Content	Hrs.	CO
	Introduction: System graph, loop, cut-set and incidence matrices; Algorithms for the	8	CO1
1	formation		
	of bus admittance and impedance matrices, Three-phase Admittance YBUS and Impedance		
	ZBUS matrices;Optimal load flow		
	Power flow solutions: Gauss-Seidel, Newton-Raphson, Approximation to Newton-Raphson	8	CO2
2	Method, Line flow equations and Decoupled and Fast decoupled techniques.		
	Fault Analysis: Symmetrical faults, Fault calculations using ZBUS, Unsymmetrical faults-	8	CO3
3	Problems on various types of faults.		
	Contingency and security studies: Factors affecting security, State transition diagram,	8	CO4
4			
5	Modern energy control Techniques: Modern energy control centres, Introduction to	8	CO5

Name & Sign of Program Coordinator

Supervisory Control and Data Acquisition in power systems(SCADA), benefit of SCADA, Remote terminal and connection, Human machine interface

References Books:

1. G.W. Stagg & A.H. Al-Abiad, "Computer Methods in Power Systems", Mc-Graw Hill, 1998.

2. Haadi Sadat, "Power System Analysis", Tata McGraw Hill, 2002

3. M.A. Pai, "Computer Techniques in Power System Analysis", Tata McGraw Hill, 2014

4. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", Tata McGraw Hill, 2014

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	2	3	3	3		2						2	2	2
CO2	2	3	3	3		2						2	3	2
CO3	1	3	3	3		2						2	2	2
CO4	1	2	3	3		2						1	2	3
CO5	2	3	3	3		2						1	3	3

3: Strong contribution, 2: average contribution, 1: Low contribution

Name & Sign of Program Coordinator	Sign & Seal of HoD	

ELECTRICAL ENGINEERING

				Effectiv Session	e from	l,	2022-202	3
Course Code	EE 611	Title of The Course	FACTS DEVICES & HVDC TRANSMISSION		L	Т	Р	С
Pre-Requisite	None	Co-Requisite	None		4	0	0	4

Objectives

	Course Outcomes
CO1	Understand the different type power electronic devices and their characteristics, used for FACTS
	controller, Recognized different issues in ac power transmission, .Implement of different FACTS
	controller for power flow control
CO2	Impart knowledge of working, control function and behavior under different loading condition of
	various type of Voltage Source Converters used in power Transmission,
CO3	Developed complete understanding of different type of Self and Line Commutated Current
	Sourced Converters used power flow control, Analyze between VSC & CSI
CO4	Explain basic objectives of using series and shunt compensator, Understandworking,
	characteristics and control of different FACTS devices used in power transmission.
CO5	Understand working, characteristics and comparison of Combined Compensators used for power
	flow control, Explain the working and control of Interline power flow controller

No.	Content	Contact	Mapped
140.	Content	Hrs.	CO
	FACTS concepts and General system considerations Introduction to power	8	CO1
1	semiconductor devices: Diode, GTO, MOSFET, IGBT, MOS Controlled Thyristor;		
	Transmission interconnection; Power flow in ac system; Power flow and dynamic stability		
	considerations; Basic of FACTS controllers: Shunt, Series, Combined and other controllers;		
	FACTS technology; HVDC or FACTS.		
	Voltage Source Converters Basic concepts, Single phase full wave bridge converter	8	CO2
2	operation, Three phase full wave bridge converter, Sequence of valve conduction process in	-	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Т

Т

	each ph convert				r conne	ections	for 12	pulse	operati	on, Thre	e level	voltage	sourced		
-											-	ts, Thre operatio	e phase	8	CO3
					•					age sour		-			
					•	,			-			f control	lable	8	CO4
	VAR Generation, Static VAR Compensators, SVC and STATCOM, Static series compensators, SSSC, TSSC & TCSC, Basic concept of phase angle regulator, Power flow														
	control					SC, Ба		icept of	pnase	angle re	gulator,	Power	llow		
5	Combi	ned	Compe	ensator	s Int	roducti	on, U	Jnified	pow	er flow	contr	oller (UPFC),	8	CO5
	Conventional power control capabilities, Real and reactive power flow control, Comparison														
	of UPFC to series compensators, Control structure, Dynamic performance, Interline powe										e power				
	flow controller basic operating principles, Control structure, Application considerations.									ns.					
Defer	ences]	Doolaa													
				VIIOVI	"Und	erstand	ling FA	ACTS of	concept	s and Te	chnolo	ov of Fl	exible A	C Tran	smission
	n", Sta						-		oneept	5 und 1		59 01 1 1			5111551011
								ge Inter	mation	al, 1990					
3.J. A	rrillaga	ı, "Hig	h volta	ge dire	ct curre	ent Tra	nsmiss	ion", I	ET digi	ital libra	ry, 2nd	Edition,	1998		
4.E.W	7. Kimł	oark, "l	Direct (Current	t transn	nission	", Wile	ey-Blac	ekwell,	1st Edit	ion, 197	'1.			
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO															
CO1	3	3	3	2	1	2	1	2	2	1	1	2	2	1	
CO2	3	3	2	2	2	1	1	2	3	1	1	2	3		_
<u>CO3</u>	3	3	1	1	2		1	2	2	1		2	2		_
<u>CO4</u>	3	3	2	2	2			2	3	1		2	2	3	_
CO5	3	3	2	2	2		1	2	2	1	1	2	3	2	

3: Strong contribution, 2: average contribution, 1: Low contribution

CO5 3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Name & Sign of Program Coordinator

Sign & Seal of HoD